
Crystallography and Phase Equilibria
A Review: Part II—Space Groups and Structure

J.F. Smith

(Submitted June 18, 2004)

1. Introduction

This is the second part of a three-part review concerning
the relationship between crystal structures and phase equi-
libria. The first part emphasized that the point group sym-
metries of the macrosymmetry of a well-developed crystal
and of one of its lattice points were identical, with one
defining the other. It was noted that the macrosymmetry was
a projective symmetry, and, although it was capable of de-
termining the directions and relative magnitudes of the lat-
tice parameters and their angular relationships, it was inca-
pable of defining the numerical magnitudes. Such was the
status of crystallographic information as the 19th century
rolled toward the 20th. It remained for the 20th century to
produce a means of quantitatively defining those parameters
and a means for determining the positions of individual
atoms within a crystal structure.

The present part of the review speaks to the utilization of
diffraction phenomena for establishing the magnitudes and
directions of the lattice parameters and to the determination
of the atomic loci within crystal structures. In particular, the
interest is in the scattering of waves the wavelength of
which is near the dimensions of the scattering particles. This
type of scattering is known as Thompson scattering, and
appropriate wavelengths for scattering by atoms can be
found in x-ray, electron, and neutron radiation. In compari-
son, the scattering by particles that are small with respect to
the wavelength of the incident radiation is known as Ray-
leigh scattering, and the sunbeams produced as visible sun-
light passes through a cloud or shines through a window
into a room with dust in the air are examples of Rayleigh
scattering. The phenomenon is useful for studying colloidal
suspensions. It is not the aim of the present review to make
expert crystallographers, but rather to make crystallographic
information more understandable in terms of its relevance to
thermodynamics and phase equilibria. Specific topics that
are discussed are as follows:

• Wave motion and its interaction with three-dimensional
crystal lattices to produce diffraction patterns in much
the same way that sunlight interacts with a ruled grating
to produce the colors of the rainbow.

• The positions of diffraction maxima and evaluation of
the magnitudes of lattice parameters and inference of
space group symmetry.

• Only for very simple structures is it possible to deter-
mine atomic positions solely from the positions of dif-
fraction maxima. Furthermore, the inference of a unique

space group may not be possible because diffraction is
insensitive to the presence or absence of a center of
symmetry.

• The intensities of diffraction maxima provide the means
of determining the atomic positions within a crystal
structure, and symmetry provides limitations upon the
number of positional parameters that need to be speci-
fied for the atoms.

• Electrons, x-rays, and neutrons are the common radia-
tions that are used in diffraction studies. Electrons and
x-rays are diffracted by the electron distributions in ma-
terials, so their diffraction data can be used to provide
electron density maps where the density maxima imply
atomic loci. On the other hand, neutrons are scattered
by atomic nuclei and, because the neutron has a mag-
netic moment, also by magnetic dipoles. Thus, neutron
diffraction can yield data that differ from data obtained
from x-ray or electron diffraction.

2. Crystal Diffraction

Coherent Thompson scattering is the basis of diffraction.
Diffraction effects can be used to distinguish the nature and
magnitudes of the translational repetitions in a crystal that
projectively cannot be distinguished from simpler inversion,
rotational, and mirror symmetries. Various centering con-
ditions of the Bravais lattices provide examples of transla-
tions that are readily detectable by diffraction. In addition,
there are symmetries that have become known as screw axes
and glide planes. These symmetries are a combination of
translation and rotation or of mirroring plus translation. The
details of these symmetries are subsequently elaborated. In-
clusion of these symmetry elements expands the 32 point
groups to a total of 230 space group symmetries. The sym-
metry constraints of a space group make easier the task of
defining atomic coordinates and of determining the posi-
tional locations of atoms in crystal structures. It should be
noted that the space group symmetry of a crystal structure
may be inferred from the positions of the diffraction
maxima, but that the atomic coordinates are determined
from the intensities of the diffraction maxima.

It was the discovery of x-rays by Roentgen in 1895 in
combination with the concept of the nuclear atom, derived
from the �-particle scattering experiments of Rutherford in
the first decade of the 20th century, that stimulated Max von
Laue, in early 1912, to irradiate crystals with x-rays. The
results confirmed that x-rays, like visible light, were elec-
tromagnetic radiation and that the periodic atomic arrays in
crystals act as three-dimensional gratings to produce dif-
fraction maxima. W.L. Bragg learned of von Laue’s work
and performed a series of experiments to produce results
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from which were developed a relationship between x-ray
wavelength and crystal spacings. These experiments uti-
lized a spectrometer for the determination of x-ray wave-
lengths that was developed by the father of W.L. Bragg,
W.H. Bragg. The resultant relationship is what is now
known as Bragg’s law, and it defines the conditions that
produce diffraction maxima. This law is defined mathemati-
cally as

� � 2 dhkl sin �hkl

where � is the x-ray wavelength, � is the angle between the
incident x-ray beam and the scattering lattice planes, and
dhkl is the interplanar spacing between the lattice planes. For
this discovery, the two Braggs were awarded the Barnard
Gold Medal of the U.S. Academy of Sciences in 1914 and
the Nobel Prize in Physics in 1915.

In Fig. I-2 from the first part of this review series, it is
evident how the lattice points give rise to planar arrays of
points that can scatter incident radiation. Figure II-1 in this
part of the review illustrates how an advancing wave front,
shown by the lower straight lines, is scattered by lattice
points. Each point scatters the incident wave over a spheri-
cal solid angle. Wave crests pass in succession at intervals
of one wavelength, �. The wave crests that have passed the
line of points are shown by the circular arcs whose radii are
�, 2�, 3�, to n�. It is evident that, along a general direction,
the scattered waves have a random phase relationship, but
along the directions indicated by zero order, first order,
second order, etc., the scattered waves are in phase, and
these are directions of diffraction maxima.

Figure II-2 illustrates how Bragg’s law relates to crystal
diffraction. In this figure, L-L1 represents the incident wave
front and N1-N-N2 represents the scattered wavefront. M1,
M, and M2 are scattering points along (hkl) planes separated
by a distance, dhkl. When �hkl is such that the distance PM2Q
is equal to an integral number of wavelengths, the incident
and diffracted waves are in phase and produce a diffraction
maximum. In crystallography, it is common to account for
higher order diffraction maxima by modifying the d-spacing
rather than by writing an integer times the wavelength (e.g.,
for (100) planes the first-order maximum would be for d100,
the second-order maximum d200, and the third-order maxi-
mum d300).

3. Positions of Diffraction Maxima

The indexing of diffraction maxima in terms of assigning
the (hkl) planes responsible for the geometric spacings of
the diffraction maxima depends upon the experimental ap-
paratus that was used to generate the pattern. Since this
review is intended to review crystallographic information
with pertinence to alloy phase equilibria, the details of in-
dexing will be left to the crystallographer. Computer pro-
grams do exist for indexing powder patterns: A widely used
example is the Rietveld program (Ref 1) (powder is herein
used to denote fine-grained material with random grain ori-
entation so that all (hkl) planes are in a position to contribute
to the diffraction pattern). The indexing of a diffraction
pattern defines the crystal system of the diffracting material.
Then, with the positions of the hkl diffraction maxima and
the wavelength of the incident radiation both known,
Bragg’s law may be used to evaluate the magnitudes and
angular relationships of the lattice parameters, as shown in
Table II-1 for the various crystal systems.

Because volume is relevant to thermodynamic consider-
ations, those interested in phase equilibria may be interested
in the volume of a phase under consideration. The volume
of a unit cell is the triple scalar product of the lattice pa-
rameter vectors. The atomic content of the unit cell in com-
bination with the volume of the unit cell allows the evalu-
ation of the molar volume of a crystalline material. To
obtain precise values of the lattice parameters, the Bragg
equation may be used to determine the type of measurement
to be made. With recognition that the measurement is of �,
the Bragg equation can be rewritten as

d sin � � �/2

and differentiation leads to

d cos � �� + sin � �d � 0

which can be rearranged to

�d/d � −cot � ��

Fig. II-1 Scattering of waves by a periodic array to produce
constructive interference in specific directions

Fig. II-2 Relationship of the interplanar d-spacing and the angle
�, which produces a path length difference of PM2Q � n� be-
tween scattering from plane A and plane B
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Since cot � varies from infinity at � � 0 to become asymp-
totically zero at � � 90°, the import of this equation is that
it indicates that errors in the measurement of � become less
and less important in the evaluation of d as � increases
toward 90°. Unfortunately, the physical limitations of con-
struction prevent building an apparatus to accumulate dif-
fraction data at angles much greater than � � 75° to 80°.
Even so, precisions of 0.1 to 0.2% (four significant figures)
are readily obtained from back reflection data, and with
great care a fifth significant figure is attainable.

4. Atomic Arrays and Diffracted Waves

There are many factors that affect the intensity of dif-
fracted waves (e.g., temperature, absorption, etc.). How-

ever, the factor of most interest to the crystallographer is the
geometry of the atomic array within a crystal. This relates to
the bonding interactions and thence to the energetics that
stabilize the crystal. For purposes of unraveling the nature
of this geometry, relative intensities of the diffracted
maxima are sufficient. For an “ideally imperfect” solid, the
diffracted intensites, Ihkl, are proportional to the square of
the absolute magnitude of a quantity that is called the struc-
ture factor, Fhkl. For a truly perfect solid, the Bragg condi-
tions would be satisfied both in the incident and diffracted
directions leading to attenuation arising from internal dif-
fraction back and forth between the incident and diffracted
directions. The ultrastrong “whiskers” that received so
much study a few decades ago probably approach this level
of perfection.

Table II-1 Relationships between d spacings for hkl reflections and lattice parameters for the seven crystal
systems
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Though the intensity from a truly perfect crystal should
be directly proportional to |Fhkl| rather than |Fhkl|

2, ordinary
crystals contain enough imperfections in the form of dislo-
cations, vacancies, foreign atoms, and misplaced atoms,
etc., to cause warpage of the atomic planes to reduce mul-
tiple diffraction back and forth between planes, so ordinary
crystals can be classified as ideally imperfect with Ihkl being
proportional to |Fhkl|

2. It may be noted at this point that, if
conditions for diffraction are met in a given direction, they
are also met at 180° from that direction. Thus, a diffraction
pattern does not distinguish between top and bottom, front
and back, or left and right sides, and is therefore incapable
of detecting the presence or absence of a center of symme-
try. However, a statistical analysis of the intensity distribu-
tions can show whether or not a center of symmetry is
present (Ref 2).

The structure factor involves two terms; one of these is
the atom factor, and the other depends upon the geometric
distances and directions of the atomic separations within the
lattice point. The scattering of x-rays and electrons is de-
pendent upon the electronic distribution around an atom,
and for those two radiations the atom factors are the same.
However, neutrons are scattered by the nuclei and by mag-
netic moments, so the atom factors for neutrons are different
and for present purposes are discussed in detail. That part of
the incident wave that continues in the same direction as
the incoming wave (zero-order wave front in Fig. II-1) has
no phase shifting, so the atom factor is simply the number
of electrons around an atom (i.e., the atomic number). For
all other directions of scattering, there is a phase shift be-
tween scattering from an electron in one position compared
with an electron at a different position. This is illustrated in
Fig. II-3. The attenuation due to the phase shifting of all
electrons in the atom is the atom factor, f.

For x-rays and electrons, a plot of atom factors for hy-
drogen through uranium are plotted as functions of (sin �)/�
in Fig. II-4. This plot illustrates that the determination of the
positions of light atoms in the crystal structures of phases
with light atoms combined with heavy atoms is difficult
because the intensities in such a diffraction pattern are
dominated by the heavy atoms, with only minor contribu-
tion from the light atoms. It may also be noted that if there
is a level of ionization of an atom, the zero intercept of
the atom factor should rise or fall by the level of ioniza-

tion. However, any level of ionization involves the outer-
most electrons, but Bragg’s law shows that diffraction data
invert space, in the sense that dhkl and �hkl are inversely
related. Thus, as (sin �hkl)/� increases, the importance of the
valence electrons rapidly decreases and the core electrons
dominate to make the atom factor insensitive to any level of
ionization except in the very far front reflection region.
Indeed, it requires a great deal of work to get any informa-
tion on the bonding electron configuration from diffraction
studies (Ref 3).

The other term in the structure factor has to do with the
vectorial relationships among all of the atoms in the crystal
structure and results from the fact that an atom at one po-
sition in a unit cell will see the incident wave at a different
phase angle than an atom at another position. Thus, the
composite of the phase relationships of all atoms in a crystal
structure must be considered for each reflection. The struc-
ture factor may be written as

Fhkl � �i fi exp 2	j(hxi + kyi + lzi)

Fig. II-3 The atom factor arises from the phase shift induced by
the fact that the incident wave maximum passes a point in front of
an atom at a different time than it passes a point on the far side of
the atom.

Fig. II-4 A plot of the atom factors for the 92 naturally occurring
atoms
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where the summation is over all of the atoms in the unit cell,
fi is the atom factor for the ith atom, hkl are the Miller
indices of the reflection, j � √−1, and xi, yi, and zi are
atomic coordinates in terms of the fractional translations of
the lattice parameters to define the locus of the ith atom with
respect to the origin of the unit cell.

The availability of a quantitative expression related to
the intensity of hkl reflections allows the crystallographer to
search diffraction data for characteristic extinctions. Such
characteristic extinctions carry information concerning the
translational relationships within a crystal. How and why
this works can be illustrated by examining centering con-
straints upon diffraction intensities. A very simple case is a
body-centered Bravais lattice. With recognition that a body-
centered lattice, I, repeats everything in the array of one
lattice point at a translation of (a + b + c)/2, the structure
factor may be rewritten as

Fhkl = �i fi exp 2	j ��hxi + kyi + lzi� + �h�xi + 1⁄2�
+ k�yi + 1⁄2� + l�zi + 1⁄2���

where the summation is now over the atoms in one-point
array rather than over every atom in the unit cell. Since
exp (a + b) � (exp a)(exp b), a common factor in the two
terms is �i fi exp 2	j {(hxi + kyi + lzi)}, so the structure
factor can be rewritten as

Fhkl = �1 + exp 	j �h + k + l�� �i fi exp 2	j �hxi + kyi + lzi�

Series expansion shows that exp ± j
 � cos 
 ± j sin 
.
Since h, k, and l are integers, the conversion of exp 	j (h +
k + l) to a cos and sin representation results in the sin (h +
k + l) 	 � 0. Because h, k, and l are integers, the cos term
will be 1 if (h + k + l) is even or −1 if (h + k + l) is odd. If
odd, {1 + exp 	j (h + k + l)} will be zero, and the diffraction
pattern of a body-centered lattice will show no diffraction
maxima for which the sum of the Miller indices are odd.
Analogous procedures can be used to derive conditions for
non-extinctions of hkl reflections for non-primitive lattices,
i.e., face-centered (F), end-centered (A, B, or C), hexagonal
indexing of a rhombohedral lattice (R), and rhombohedral
indexing of a hexagonal lattice (H). Table II-2 summarizes
the conditions for non-extinction.

To understand all of the listings in Table II-2, a discus-
sion of glide planes and screw axes is necessary. A glide
plane is a mirror plane with the reflected plane being trans-
lated with respect to its mirror image. In other words, a
mirrored plane has exactly the same atomic content and
geometry as the plane from which it reflects, but there is a
displacement of one plane with respect to another. The ex-
ternal form of a crystal containing glide planes is unaffected
by such displacement, but x-ray reflections can detect their
presence. As an example, if the glide plane is normal to the
a direction, a general point at xyz will involve a reflection
that changes x to x, and y and/or z is translated. If y is
translated, the new point occurs at x,y + 1⁄2,z and this is

known as a b glide. The detection of this glide plane is in the
0kl reflections, a subset of the general hkl reflections. The
structure factor for 0kl reflections with a b glide can be
written as

F0kl = �i fi exp 2	j {kyi + lzi + k(yi + 1⁄2) + lzi}

which with rearrangement is

F0kl � {1 + exp 	jk} �i fi exp 2	j (kyi + lzi)

so F0kl � 0 if k is odd. A b glide can occur in a P, B, or C
bravais lattice.

Other extinctions in 0kl reflections are indicative of other
types of glides e.g., k mixed, l � 2n indicates a c glide with
translation zi + 1⁄2; k + l � 2n indicates an n glide with
translations yi + 1⁄2 and zi + 1⁄2; and k + l � 4n indicates a
d glide with 1⁄4 translations and with x reversing signs at
each 1⁄4 translation. Figure II-5a illustrates an n glide normal
to the a direction, and Fig. II-5b illustrates a d glide normal
to the b direction.

Combinations of rotations and translations lead to screw
axes. When viewed down the axis, a screw axis projects as
simple rotation. A twofold screw axis parallel to the c axis
takes a general point at xyz to x,y,z + 1⁄2. Repetition of this
operation produces a second point at one lattice translation
from the original point. Note that there is no right- or left-
handed sense to this axis because a 180° turn in either sense
is the same, and such a twofold screw axis is designated as
21. However, threefold, fourfold, and sixfold screw axes
may be left-handed or right-handed. A threefold screw axis
that is left-handed, 31, takes a general point xyz first to
y,x − y,z + 1⁄3, then to y − x,x,z + 2⁄3, while a right-handed
rotation reverses the sequence with xyz going first to
y − x,x,z + 1⁄3 and then to y,x − y,z + 2⁄3, and is designated
as a 32 screw axis. Threefold, fourfold, and sixfold screw
axes are compared with simple rotors and rotation inversion
rotors in Fig. II-6. Note that 42 and 63, like 21, are neither
right- nor left-handed. Note also that all screw axes project
onto a plane normal to the rotation axis as simple rotors of
the same rotation number and are therefore not detectable in
macrosymmetry. The presence or absence of screw axes
may be inferred from the extinctions in the subsets of the
h00, 0k0, 00l, or hh0 reflections (Table II-2). In the case of
left-handed and right-handed screw axes, they may also be
detected by the measurement of physical properties such as
the rotation of polarized light. In some instances, left-
handed and right-handed screw axes may also explain some
enantiomorphic twinning.

5. Determining Space Group and Crystal
Structure

To illustrate the utility of symmetry, the crystal structure
determination (Ref 4) of the phase Ni10Zr7 is reviewed. A
study of the phase diagram (Ref 5) of the Ni-Zr system has
reported a range of homogeneity for this phase extending
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from near 56.5 to 58.9 at.% Ni. The latter corresponds
within experimental uncertainty with the stoichiometric
composition. Two small crystals were grown in this phase,
one at the Ni-rich (stoichiometric) boundary and one at the
Zr-rich boundary. Diffraction symmetries were compatible
with orthorhombic symmetries for both crystals, and preci-
sion lattice parameter determinations are shown in Table
II-3. The densities of massive samples were found to be
7.78 g/cm3 for a 48 wt.% Ni alloy and 7.67 g/cm3 for a 45.3
wt.% Ni alloy. These compositions are very near the phase
boundaries.

With the formula Ni10Zr7 and the volume of the unit cell
from the lattice parameters, a theoretical density of 7.79
g/cm3 is obtained with four formula masses per unit cell for

the stoichiometric phase. The phase diagram shows the Zr-
rich phase boundary to be 45.5 wt.% Ni, which, with sub-
stitutional replacement of two smaller Ni atoms by two
larger Zr atoms, generates a unit cell with composition
Ni38Zr30 with a theoretical density of 7.68 g/cm3. Both theo-
retical densities are slightly larger than the experimental
densities, which is the norm because massive samples con-
tain grain boundaries and other imperfections that tend to
reduce the density. The lattice parameters for the Zr-rich
phase are larger than those of the stoichiometric phase,
which is compatible with the substitutional replacement of
smaller Ni atoms by larger Zr atoms.

The positions and intensities of 289 independent reflec-
tions were measured for the Zr-rich crystal and of 172

Table II-2 Characteristic extinction and non-extinction conditions for the various symmetry elements that involve
translational components

Class of
reflection

Condition for non-extinction
(n = an integer) Interpretation of extinction Symbol of symmetry element

hkl h + k + l � 2n Body-centered lattice I
h + k = 2n C-centered lattice C
h + l � 2n B-centered lattice B
k + l � 2n A-centered lattice A
� h, k, l, all even or all odd Face-centered lattice F
−h + k + l = 3n Rhombohedral lattice indexed on hexagonal reference system R
h + k + l = 3n Hexagonal lattice indexed on rhombohedral reference system H

0kl k � 2n (100) glide plane, component b

2
b (P, B, C)

l � 2n (100) glide plane, component c

2
c (P, C, I)

k + l � 2n (100) glide plane, component b

2
+ c

2
n (P)

k + l � 4n (100) glide plane, component b

4
+ c

4
d (F)

h0l h � 2n (010) glide plane, component a

2
a (P, A, I)

l � 2n (010) glide plane, component c

2
c (P, A, C)

h + l � 2n (010) glide plane, component a

2
+ c

2
n (P)

h + l � 4n (010) glide plane, component a

4
+ c

4
d (F), (B)

hk0 h � 2n (001) glide plane, component a

2
a (P, B, I)

k � 2n (001) glide plane, component b

2
b (P, A, B)

h + k � 2n (001) glide plane, component a

2
+ b

2
n (P)

h + k � 4n (001) glide plane, component a

4
+ b

4
d (F)

hhl l � 2n (11̄0) glide plane, component c

2
c (P, C, F)

h � 2n (11̄0) glide plane, component a

2
+ b

2
b (C)

h + l � 2n (11̄0) glide plane, component a

4
+ b

4
+ c

4
n (C)

2h + l � 4n (11̄0) glide plane, component a

2
+ b

4
+ c

4
d (I)

h00 h � 2n [100] screw axis, component a

2
21, 41

h � 4n [100] screw axis, component a

4
41, 43

0k0 k = 2n [010] screw axis, component b

2
21, 43

k � 4n [010] screw axis, component b

4
41, 43

00l l = 2n [001] screw axis, component c

2
21, 42, 63

l = 3n [001] screw axis, component c

3
31, 32, 62, 64

l = 4n [001] screw axis, component c

4
41, 43

l = 6n [001] screw axis, component c

6
61, 62

hh0 h = 2n [110] screw axis, component a

2
+ b

2
21
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independent reflections for the stoichiometric phase. For the
Zr-rich crystal, no characteristic extinctions were observed
in the general set of (hkl) reflections. Thus, the lattice was
taken to be primitive P. However, (0kl) reflections occurred
only with k � 2n, (h0l) reflections occurred only with l �
2n, and (hk0) reflections occurred only with h � 2n. From
Table II-2, it can be seen that these represent, respectively,
a b glide normal to the a direction, a c glide normal to the
b direction, and an a glide normal to the c direction. Thus,
the space group at the Zr-rich boundary is indicated to be
Pbca.

For the stoichiometric crystal (hkl), reflections were ob-
served only when h + k � 2n, which is indicative of a
C-centered lattice. For (0kl) reflections, no characteristic
extinctions were observed. However, (h0l) reflections oc-
curred only with h + l � 2n. C centering requires h + k �
2n, so h must equal 2n when k � 0, then so also must 1 �
2n. The latter was taken as indicating a c glide normal to the
b direction. The (hk0) reflections appeared only with both
h � 2n and k � 2n, but not with two odd values. This might
be indicative of either an a or b glide normal to the c
direction. By analogy with the Zr-rich crystal, an a glide
seems more likely, so the probable space group was taken to
be C2ca or Cmca. The former lacks a center of symmetry,
but the latter has one.

The determination of the crystal structure of the Zr-rich
crystal was done first. After making standard corrections to
the intensity data so that Ihkl is proportional to |Fhkl|

2, Pat-
terson projections were made for the (x,y), (x,z), and (y,z)
planes. These projections are simply plots of the function
P(x,y) � � |Fhkl|

2 cos 2	(hx + ky) evaluated at incremental
values of x and y across a unit cell. P(x,z) and P(y,z) are
analogous. With modern computing capability, this would
have been done today with a three-dimensional Patterson
projection. These plots provide information with regard to
the interatomic vectors, which are inferred from the dis-
tances and directions from the origin to the various maxima
that appear in the summations. Reference to the Interna-
tional Tables for X-ray Crystallography shows that space
group Pbca has its symmetry satisfied by the occupancy of
either of two fourfold special sets or eightfold general sets
as follows:

4�a� 000; 1⁄2,1⁄2,0; 0,1⁄2,1⁄2; 1⁄2,0,1⁄2

4�b� 0,0,1⁄2; 1⁄2,1⁄2,1⁄2; 0,1⁄2,0; 1⁄2,0,0

8�c� xyz; 1⁄2 + x,1⁄2 − y,z; x,1⁄2 + y,1⁄2 − z; 1⁄2 − x,y,1⁄2 + z;
xyz; 1⁄2 − x,1⁄2 + y,z; x,1⁄2 − y,1⁄2 + z; 1⁄2 + x,y,1⁄2 − z

Such sets are normally termed Wykoff sets.
With the four formula weights per unit cell indicated by

density considerations, these sets were utilized to find lo-
cations of 40 Ni sites and 28 Zr sites. Note that once either
fourfold set is occupied there is no possibility of using it
again, but by choosing different xyz coordinates the eight-
fold sets can be used many times. The stoichiometry re-
quires that one fourfold set must be occupied by Zr and
limits the choice for the remaining Zr atoms to 8(c) sets.
After several unsuccessful attempts, a suitable trial structure
was derived that satisfactorily matched the Patterson pro-
jections, had reasonable interatomic spacings, and gave rea-
sonable agreement between the calculated and observed
structures. This structure was refined by the method of least
squares to yield the following reliability indices with sub-
script o being based on observed intensity data and c being
calculated with the refined positional parameters

R1 = �||Fo| − |Fc||��|Fo| = 0.163 and
R2 = ��|Fo| − |Fc|�

2��F0
2 = 0.0330

The refined structure utilized the 4(a) set and three eightfold
sets for Zr and five eightfold sets for Ni and required the
adjustment of 24 positional parameters.

Once the structure of the Zr-rich phase had been refined,
it was relatively easy to postulate trial structures for the
stoichiometric phase in both space groups Cmca and C2ca.
However, the trial structure in the centrosymmetric space
group Cmca did not refine below a reliability factor of R1 �
0.399, whereas the trial structure in space group C2ca
readily refined to R1 � 0.166 and R2 � 0.023. For space
group C2ca, there are again only fourfold and eightfold sets,
in this case one of each:

Fig. II-5 In both cases, a glide plane is shown with replications by unit translations in all three directions. (a) An illustration of an n glide
normal to the a direction. In this case, 0kl reflections would occur only with k + l � 2n, and each point would be duplicated by changing
the sign of x and translation both y and z by 1⁄2. (b) An illustration of a d glide normal to the b direction. In this case, h0l reflections only
with h + 1 � 4n, and each point would be duplicated by changing the sign of y and translating x and z by 1⁄4.
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4�a� x,0,0; 1⁄2 + x,1⁄2,0; 1⁄2 + x,0,1⁄2; x,1⁄2,1⁄2

8�b� xyz; 1⁄2 + x,1⁄2 + y,z; 1⁄2 + x,y,1⁄2 − z; x,1⁄2 − y,1⁄2 + z;
xyz; 1⁄2 + x, 1⁄2 − y,z; x,1⁄2 + y,1⁄2 − z, 1⁄2 + x,y,1⁄2 + z

In C2ca, there is one adjustable parameter in the fourfold
set, so that more than one fourfold set may be utilized. The
refined structure showed 12 Zr atoms in three fourfold sets
(indicated in Fig. II-7 by subscripts 0, 1a, and 1b), each with
a different x positional parameter. The remaining 16 Zr
atoms were in two different eightfold sets (subscripted as 2
and 3), while the 40 Ni atoms were in five eightfold sets

(subscripted as 4, 5, 6, 7, and 8 in Fig. II-7 and 8). The total
number of positional parameters in the refinement was
again 24.

Fig. II-6 Comparison of the various kinds of threefold, fourfold, and sixfold rotational symmetry. For each set, it is evident that all
threefold, fourfold, or sixfold rotors project as simple rotors.

Table II-3 Precision lattice parameters for crystals of
the stoichiometric and Zr-rich phase boundaries of the
Ni10Zr7 phase

Stoichiometric Zirconium-rich

a0 � 1.2386 ± 0.006 nm a0 � 1.2497 ± 0.004 nm
b0 � 0.9156 ± 0.008 nm b0 � 0.9210 ± 0.008 nm
c0 � 0.9211 ± 0.005 nm c0 � 0.9325 ± 0.002 nm
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A comparison of the structures of the stoichiometric
phase and the Zr-rich phase showed them to be closely
comparable. The basic structure of the stoichiometric phase
is shown in Fig. II-7 and II-8 to be an interlayered array with
alternate layers of primarily Zr atoms and wrinkled layers
solely of Ni atoms. Figure II-7 shows that the Zr in the three
fourfold sets all lie at the same level along lines paralleling
the a lattice parameter at b + c � 0 and b + c � 1⁄2. The
eightfold sets Zr-3 and Ni-8 are also coplanar, but the eight-
fold set Zr-2 is slightly displaced up and down. The
wrinkled Ni layer shown in Fig. II-8 can be superimposed
above the layer in Fig. II-7 to develop the three-dimensional
structure. Then the structure is completed if the pairs of
layers are reproduced by the C-centering operation.

The structure of the Zr-rich crystal differs in that there
are significant distortions of the stoichiometric structure.
For instance, the fourfold Zr sets no longer lie on a straight
line parallel to the a axis. Rather with one atom on the a
axis, the next two are displaced alternately in one direction
or the other from the axis so that the 1a and 1b fourfold sets
coalesce into an eightfold set. Similar distortional shifts are
seen in the coordinates of other sets, so that the C centering
is lost to revert to the lower symmetry Pbca space group.
Thus, this is a case in which there is a continuous phase that
changes space groups as composition changes. There is a
transition, but it is not first order so it will not appear on an

equilibrium diagram. The rules that govern the legitimacy
of second-order transitions are discussed in more detail in
part III of this review.

6. Summary

• The lengthy discussion of the structure determination of
the Ni10Zr7 phase illustrates the utility of symmetry in
reducing work. Had there been no use of symmetry, the
determination of the structures would have required the
determination of the positional coordinates of 68 atoms,
or a total of 204 positional parameters. The inclusion of
the symmetry constraints reduced this number to 24.
This is a reduction in number in excess of eightfold.

• The structure change in Ni10Zr7 shows that a single
phase can undergo a shift in space groups for reasons
other than order-disorder.

• Once a structure has been refined, it is relatively
straightforward to calculate interatomic distances and
coordination numbers. This is relevant to the choice of
models for computing the variation in phase composi-
tion, i.e., substitution, interstitial, or vacancy model. In

Fig. II-7 The atomic arrangement within the Zr layers is illus-
trated. The prefixed superscript zero indicates atoms that are co-
planar, while the prefixed + and − indicate atoms that are, respec-
tively, above and below the plane. The subscripted numbers
represented atoms within related Wykoff sets. If the solid lines
represent the lattice parameter translations with the origin at the
lower left, the figure represents the geometry of a (011) plane
passing through the center of the unit cell. Successive equivalent
layers can be generated by the C-centering operation.

Fig. II-8 The atomic arrangement within the Ni layers that in-
terlay between the successive Zr layers. Again, the prefixed su-
perscripts + and − indicate atoms that are slightly above and below
the plane, and the subscript numbers represent atoms within a
Wykoff set. If the rectangle in this figure is superimposed over the
rectangle in Fig. II-7, the positioning of the Ni atoms will be that
of the first Ni layer interposed between the Zr layer of Fig. II-7 and
the next Zr layer generated by C-centering.
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the present case, the evidence supports substitution. The
question then is which sets are most likely to accept
atomic replacement, and the interatomic distances indi-
cate that substitution of Zr for Ni in the Ni-8 set is least
likely, but there is little to differentiate the Ni-4 through
Ni-7 sets, so a random substitution of Zr for Ni at those
32 loci would seem reasonable.

• Also the atomic coordination in combination with the
relative positions of the components in the periodic
chart offers clues as to the nature of the bonding in the
structure and thence to the expected magnitudes of the
enthalpies of formation. In the case of Ni10Zr7, the
structure determination indicates that the compound is
primarily a packing compound with only secondary di-
rectionality considerations. The enthalpy of formation
should therefore be normally metallic for the number of
valence electrons involved. Again this is discussed in
more detail in part III of this review.
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